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Abstract. Hans Duistermaat was scheduled to lecture in the 2010 School on
Poisson Geometry at IMPA, but passed away suddenly. This is a record of a talk
I gave at the 2010 Conference on Poisson Geometry (the week after the School) to
share some of my memories of him and to give a brief assessment of his impact
on the subject.

Johannes Jisse (Hans) Duistermaat (1942–2010) earned his doctorate in 1968 at
the University of Utrecht under the direction of Hans Freudenthal. After holding
a postdoctoral position at the University of Lund, a professorship at the Univer-
sity of Nijmegen, and a visiting position at the Courant Institute, he returned to
Utrecht in 1975 to take over Freudenthal’s chair after the latter’s retirement. He
held this chair until his own retirement in 2007. He continued to play a role in the
life of the Utrecht Mathematical Institute and kept up his mathematical activities
until he was struck down in March 2010 by a case of pneumonia contracted while
on chemotherapy for cancer.

I got to know Hans Duistermaat as an undergraduate when I took his freshman
analysis course at Utrecht. At that time he taught the course from lecture notes
that were in style and content close to Dieudonné’s book [23]. Although this was
a smashing success with some students, I think Hans realized he had to reduce
the potency so as not to leave behind quite so many of us, and over the years the
lecture notes grew into his and Joop Kolk’s still very substantial undergraduate
textbook [31]. Anyway, I quickly became hooked and realized that I wanted one
day to become his graduate student. This came to pass and I finished in 1990 my
thesis work on a combination of two of Hans’ favourite topics, Lie groups and
symplectic geometry.

The online Mathematics Genealogy Project (accessed 19 December 2010) lists
twenty-four PhD students under Duistermaat’s name. What the website does not
tell you is that his true adviser was not Freudenthal, but the applied mathemati-
cian G. Braun, who died one year before Hans’ thesis work was finished and
about whom I have been able to find little information.

The subject of our conference, Poisson geometry, is now firmly ensconced on
both sides of the Atlantic as well as on both sides of the equator, as Alan Wein-
stein observed this week, and Henrique Bursztyn has kindly asked me to speak
about Hans Duistermaat’s impact on the field. In a narrow sense Duistermaat
contributed very little to Poisson geometry. The subject dearest to his heart was
differential equations, although he had an unusual geometric intuition. As far as
I know (thanks to Rui Loja Fernandes), the notion of a Poisson manifold appears
just once in his written work, namely in a book [26] on discrete dynamical sys-
tems on elliptic surfaces, which he finished not long before his death and which
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has just been published. But Poisson brackets can be found in most of his papers,
and the fact is that he has contributed many original ideas to the area.

Bispectral problem for Schrödinger equations. For instance, his paper [27] with Al-
berto Grünbaum continues to be influential in the literature on integrable systems
and noncommutative algebraic geometry. It contains the solution of the at first
rather strange-sounding bispectral problem, for what potentials V(x) do the solu-
tions f (x, λ) of the equation − f ′′ + V f = λ f satisfy a differential equation in the
spectral parameter λ? A comment on the bibliography of this paper: most math-
ematicians disregard the classics, but Hans was never afraid to go back to the
sources. He was widely read in the older literature on analysis and differential
geometry, and used it to great effect in his own writings.

Resonances. To mention a lesser-cited paper [25], let me remind you of Duister-
maat’s insight how resonances in a Hamiltonian system may preclude complete
integrability, as explained to us earlier this week by Nguyen Tien Zung.

Lie III. Sometimes the flow of ideas was remarkably indirect. His and Joop Kolk’s
book on Lie groups [30] (which, despite having appeared in Springer’s Univer-
sitext series, is not exactly an elementary graduate text) is much closer to Lie’s
original point of view pertaining to differential equations than modern treatments
such as Bourbaki [9], which are more algebraic in spirit. Nevertheless the book is
notable for several innovations, particularly its proof of Lie’s third fundamental
theorem in global form, which I think deserves to become the standard argument
and which runs in outline as follows.

The thing to be proved is that for every finite-dimensional real Lie algebra g
there exists a simply connected finite-dimensional real Lie group whose Lie alge-
bra is isomorphic to g. Choose a norm on g. Then the space P(g) of continuous
paths [0, 1] → g equipped with the supremum norm is a Banach space. For each
γ in P(g) let Aγ be the continuously differentiable path of linear endomorphisms
of g determined by the linear initial-value problem

A′γ(t) = ad(γ(t)) ◦ Aγ(t), Aγ(0) = idg .

Duistermaat and Kolk prove that the multiplication law

(γ · δ)(t) = γ(t) + Aγ(t)δ(t)

turns P(g) into a Banach Lie group. Next they introduce a subset P(g)0, which
consists of all paths γ that can be connected to the constant path 0 by a family
of paths γs which is continuously differentiable with respect to s and has the
property that

∫ 1

0
Aγs(t)−1 ∂γs

∂s
(t) dt = 0

for 0 ≤ s ≤ 1. The subset P(g)0 is a closed connected normal Banach Lie sub-
group of P(g) of finite codimension, and the quotient P(g)/P(g)0 is a simply
connected Lie group with Lie algebra g!

One of the many virtues of this proof is that it is manifestly functorial: a Lie al-
gebra homomorphism g → h induces a continuous linear map on the path spaces
P(g) → P(h), which is a homomorphism of Banach Lie groups and maps the
subgroup P(g)0 to P(h)0, and therefore descends to a Lie group homomorphism.
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For the details I refer you to the book; also be sure to read the historical and
bibliographical notes at the end of the chapter. The global form of Lie’s third
theorem appears to be due to É. Cartan [12], whose first proof was based on the
Levi decomposition. A later version [13] goes approximately as follows: to build
a simply connected group G corresponding to g, start with the universal covering
group G0 of the adjoint group of g, and then construct G as a central extension
of G0 by the centre of g (viewed as an abelian Lie group). The extension is
obtained from a cocycle G0 × G0 → z(g), which Cartan finds by integrating the
infinitesimal cocycle that corresponds to the Lie algebra extension z(g) → g → g0.
This argument has a natural interpretation in the language of differentiable group
cohomology, as was shown by Van Est [32]. Much earlier Lie himself suggested
a different proof: he surmised that the Lie algebra g ought to be linear and that a
group with Lie algebra g can therefore be realized as a subgroup of an appropriate
general linear group. This line of argument was justified a few years after Cartan
by Ado [1].

The point of this for Poisson geometry is that a few years after publication the
Duistermaat-Kolk proof became at Alan Weinstein’s suggestion a central feature
of Marius Crainic and Rui Loja Fernandes’ resolution of two longstanding prob-
lems in differential geometry: the integrability of a Lie algebroid to a Lie groupoid
[19], and the integrability of a Poisson manifold to a symplectic groupoid [20].
Curiously, a very different work of Duistermaat, which I will get to later, also
impinges on these integrability problems. My Cornell colleague Leonard Gross
has a paper in preparation that adapts the Duistermaat-Kolk argument to certain
infinite-dimensional situations.

Let me now discuss in a bit more detail four of Hans Duistermaat’s papers that
are of obvious relevance to the topics of this conference.

1. The spectrum of positive elliptic operators and periodic
bicharacteristics

This paper [28], coauthored with Victor Guillemin, is Hans Duistermaat’s most
cited work according to MathSciNet. It is perhaps also his technically most ac-
complished paper. The authors consider a compact n-dimensional manifold X
and a scalar elliptic pseudodifferential operator P of order 1 on X which is posi-
tive selfadjoint. The spectrum of this operator is a discrete set

0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λj ≤ · · · −→ ∞.

By placing a Dirac measure at each eigenvalue we obtain the spectral distribution
σP = ∑∞

j=0 δλj . The principal symbol p of P defines a Hamiltonian vector field Hp

on the punctured cotangent bundle T∗X \ X.

Example. The main example to keep in mind is that of the Laplacian ∆ defined
with respect to a Riemannian metric on X. For a suitable constant c the operator
c−∆ is positive selfadjoint, so the spectral theorem enables us to define a positive
square root P =

√
c− ∆, which is pseudodifferential of order 1 and whose prin-

cipal symbol is given by p(x, ξ) = ‖ξ‖ for x ∈ X and ξ ∈ TxX. The Hamiltonian
flow of p is the geodesic spray of X (at least on the unit sphere bundle).

The operator P is a quantization of the classical observable p. The classical
analogue of an eigenfunction of P is a relative equilibrium of the Hamiltonian
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vector field Hp and the classical analogue of an eigenvalue is the frequency of a
periodic motion of Hp. The purpose of the paper is to make this analogy precise.

Here I must interrupt myself to state that Hans never spoke to me in such
terms. Many of us conceive of mathematics as a system of grandiose functorial
schemes and profound analogies or correspondences suggested by the mysteries
of nature. Hans’ mind worked differently and the word “quantization” never
crossed his lips except in jest. Once he told me that on a visit to Moscow early in
his career Gelfand asked him what were his chief mathematical goals in life, and
he had no idea what to say.

What moved Hans Duistermaat, as far as I can see, was a gregarious and
competitive spirit that took him from one collaboration to the next and from one
mathematical problem to the next. These are the same qualities that made him
a keen chess player, strong enough to have once played former world champion
A. Karpov to a draw in a simultaneous match. An early manifestation of this
spirit was his eager participation in the sport of kite flying during his boyhood
in the Dutch East Indies, now the Republic of Indonesia. The local variant of
the entertainment, which Wikipedia tells me is known as kite fighting, required
coating the flying line with glass and abrasives for the purpose of ruining one’s
playmates’ equipment. Victor Guillemin relates in his acceptance notice for the
2003 Steele Prize how Hans warned him, not for nothing, against getting involved
with a duistere maat (murky companion).

Let us turn back to microlocal analysis and look at

σ̂P(t) = F σP =
∞

∑
j=0

e−iλjt,

the Fourier transform of the spectral distribution σP. This can be seen as the dis-
tributional trace of the unitary operator e−itP, which is a Fourier integral operator.
A preliminary result says that σ̂P is a tempered distribution, and therefore so is
σP. In particular the eigenvalue counting function

NP(λ) = ]{ j | λj ≤ λ }
does not grow faster than a power of λ, which foreshadows Weyl’s law. The next
result is a first hint at the connection between periods and eigenvalues.

Theorem. σ̂P is C∞ outside the set of periods of periodic trajectories of Hp.

In other words, the singular support of σ̂P is contained in the set of periods
of the Hamiltonian p. This is suggestive of the Poisson summation formula,
where one Fourier transforms a sum of delta functions supported on a lattice
and finds a sum of delta functions supported on the dual lattice. The results of
Duistermaat and Guillemin describe the singularities of σ̂P and can be viewed as
a generalization of this elementary fact.

Every orbit is periodic of period 0, so one expects σ̂P to have a big singularity
at t = 0. To focus on this singularity take a smooth function χ such that χ̂ = F χ
is a bump function equal to 1 in a small neighbourhood of 0. Then

χ̂(t)σ̂P(t) =
∞

∑
j=0

e−iλjtχ̂(t) = F

(
∑

j
χ(λ− λj)

)
.
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Theorem. We have an asymptotic expansion

∑
j

χ(λ− λj) ∼ 1
(2π)n

∞

∑
k=0

ckλn−1−k

as λ → ∞. The constants ck are independent of χ. The leading coefficient is

c0 = vol{(x, ξ) ∈ T∗X | p(x, ξ) = 1}.

This yields all sorts of information about the spacing of the eigenvalues, for
example the following version of Weyl’s law, which says that the volume of phase
space is asymptotically proportional to the number of eigenvalues.

Theorem. We have an asymptotic expansion

NP(λ) =
a

(2π)n λn + O(λn−1)

as λ → ∞, where a = vol{(x, ξ) | p(x, ξ) ≤ 1}.

A further analysis leads to a “residue formula”, which describes the poles of
σ̂P at nonzero periods.

Theorem. Let T 6= 0. Assume that all periodic orbits of Hp of period T are isolated and
nondegenerate. Then

lim
t→T

(t− T)σ̂P(t) = ∑
γ

T0,γ

2π

imγ

∣∣det(I − dΠγ)
∣∣1/2 .

There is a close resemblance between this formula and the Lefschetz formula
for elliptic complexes of Atiyah and Bott [4]. The sum on the right is over all
closed orbits γ of period T; T0,γ is the primitive period of γ; and Πγ is the
Poincaré return map of γ. Nondegeneracy of γ means that det(I − dΠγ) 6= 0.
The integer mγ is a Maslov index. For P =

√
c− ∆ it is the Morse index of the

geodesic γ for the Euler-Lagrange functional. Eckhard Meinrenken showed in
an early paper [39] that for general P the number mγ can be interpreted as a
Conley-Zehnder index.

Duistermaat and Guillemin did not do this work in isolation. Some of the
most important prior mathematical work on the subject is that of Weyl [46],
which was inspired by Planck’s model of black-body radiation, and Hörman-
der [37]. Roughly contemporaneous work includes that of Gutzwiller [36], Colin
de Verdière [16], and Chazarain [15]. See [2] for a historical survey that takes
in a good deal of the physics literature. For later developments the reader can
consult the Fourier volume in honour of Colin de Verdière, particularly Colin’s
own contribution [17] to that volume.

2. On global action-angle variables

I will give a slightly anachronistic account of Duistermaat’s paper [24] on mon-
odromy in integrable systems, which takes into consideration later work of Da-
zord and Delzant [22].

Let B be a connected n-manifold. A Lagrangian fibre bundle over B is a triple
L = (M, ω, π), where (M, ω) is a symplectic 2n-manifold and π : M → B a
surjective submersion with Lagrangian fibres. To keep things simple we will
assume that the fibres of π are compact and connected.
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The standard way to obtain such a bundle is to start with an integrable Hamil-
tonian system and throw out the singularities of the energy-momentum map. The
simplest Lagrangian fibre bundle over a given base B is as follows.

Example. Let p : B → Rn be a local diffeomorphism. Let T be the circle R/Z.
The angle form on T is dq, where q is the coordinate on R. Let M be the product
B×Tn, equipped with the symplectic form ω = ∑n

j=1 dpj ∧ dqj. Let π : M → B be
the projection onto the first factor. The functions pj are the action variables and the
(multivalued) functions qj are the angle variables. The map p ◦ π is a momentum
map for the translation action of Tn on the second factor of M.

An isomorphism of Lagrangian fibre bundles over B is given by a symplecto-
morphism of the total spaces that induces the identity map on the base. There
is an equally obvious notion of localization, that is restriction of a Lagrangian fi-
bre bundle to an open subset of the base. The Liouville-Mineur-Arnold theorem
states that every Lagrangian fibre bundle admits local action-angle variables, i.e.
is locally isomorphic to B×Tn. The problem solved by Duistermaat is when a La-
grangian fibre bundle over B admits global action-angle variables, i.e. is globally
isomorphic to B× Tn.

Theorem. A Lagrangian fibre bundle admits global action-angle variables if and only if
two invariants, µ(P) (the affine monodromy) and λ(L ) (the Lagrangian class), vanish.

Just as interesting is the fact that many commonplace integrable systems do not
admit global action-angle variables, for instance Huygens’ spherical pendulum,
which Duistermaat analyses in detail. Let me now explain the two invariants.

Monodromy. Let L = (M, ω, π) be a Lagrangian fibre bundle over B. The map
TM → T∗M given by v 7→ ι(v)ω is a bundle isomorphism, and we denote its
inverse by ω] : T∗M → TM. Let m ∈ M and put b = π(m) ∈ B. Given a covector
α ∈ T∗b B, the projection and the symplectic form produce a tangent vector vm(α),

T∗b B π∗−→ T∗m M ω]−→ Tm M, α 7−→ π∗(α) 7−→ ω]π∗(α) = vm(α).

Since we can write α = db f for a suitable function f , we see that vm(α) is the
value at m of the Hamiltonian vector field Hπ∗ f , and therefore is tangent to the
fibre π−1(b). The fibre being compact, the vector field v(α) is complete, and we
denote by ϕb(α) : π−1(b) → π−1(b) its time 1 flow. The map

ϕb : T∗b B× π−1(b) −→ π−1(b)

defined by ϕb(α, m) = ϕb(α)(m) is an action of the abelian Lie group T∗b B ∼= Rn

on π−1(b). The map α 7→ vm(α) is an isomorphism T∗b B → Tm(π−1(b)), so, the
fibre π−1(b) being connected, we conclude that the action ϕb is transitive and
locally free. The kernel of the action Pb

∼= Zn is the period lattice at b. Collecting
these fibrewise actions gives us an action

ϕ : T∗B×B M −→ M

of the bundle of Lie groups T∗B → B on the bundle M → B. The kernel of this
bundle action is the bundle of free abelian groups P = äb Pb over B, called the
period bundle. The quotient

T = T∗B/P
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is a bundle over B with general fibre the torus Tn and structure group Aut(Tn) ∼=
GL(n, Z). The quotient action

ϕT : T ×B M −→ M,

which we will write as ϕT (t, m) = t ·m, makes M a T -torsor, a principal homoge-
neous space for the torus bundle T in the sense that the map T ×B M → M×B M
defined by (t, m) 7→ (m, t ·m) is a diffeomorphism.

The T∗B-action defines for each 1-form on the base α ∈ Ω1(B) a diffeomor-
phism ϕ(α) from M to itself which induces the identity on B. This diffeomor-
phism transforms the symplectic form as follows.

Lemma. ϕ(α)∗ω = ω + π∗dα for every α ∈ Ω1(B).

Recall that a Lagrangian section of a cotangent bundle is the same as a closed
1-form. Since sections of P induce the identity map on M, the lemma tells us
therefore that P is a Lagrangian submanifold of T∗B.

This has various desirable consequences. First of all, applying the lemma to
the translation action of T∗B on itself we conclude that the standard symplectic
form is preserved by the P-action and so descends to a symplectic form ωT on
T . Thus the Lie group bundle T itself is a Lagrangian fibre bundle over B.

More importantly, we see that on any sufficiently small open subset U of the
base there exists a coordinate system p = (p1, p2, . . . , pn) such that

F (p) = (dp1, dp2, . . . , dpn)

is a frame of the local system P |U. These preferred coordinate systems determine
an integral affine structure on B, i.e. an atlas with values in the pseudogroup
defined by the integral affine group G = GL(n, Z)n Rn. Conversely, this atlas
determines the Lagrangian lattice bundle P .

Analytic continuation of the coordinate system p along a loop γ in B based at
b ∈ U gives a new coordinate system p′ at b, which is related to p by a trans-
formation gγ ∈ G. The corresponding local frames F (p) and F (p′) of P are
related by the linear part g0,γ ∈ G0 = GL(n, Z) of the affine transformation gγ.
The map γ 7→ gγ induces a homomorphism from π1(B, b) to G. The conjugacy
class of this homomorphism,

µ(P) ∈ Hom(π1(B), G)/ Ad(G) ∼= H1(B, G),

is the affine monodromy of P . (Here H1(B, G) denotes the cohomology set of B
with coefficients in the locally constant sheaf G.) The conjugacy class defined by
the map γ 7→ g0,γ,

µ0(P) ∈ Hom(π1(B), G0)/ Ad(G0) ∼= H1(B, G0),

is the linear monodromy, which determines the isomorphism class of the local
system P . The monodromy depends only on the affine structure of B, not on M
or its symplectic structure.

The class µ0(P) vanishes if and only if P is trivial. In that case T ∼= B× Tn

is isomorphic to a trivial bundle of Lie groups, M is a principal Tn-bundle over
B, and P has a global frame of closed 1-forms (α1, α2, . . . , αn). We can then find
a covering f : B̃ → B of the base and a local diffeomorphism p̃ : B̃ → Rn such that
f ∗αj = dp̃j. If the αj are exact, then the full monodromy µ(P) vanishes, we can
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define global single-valued action variables p : B → Rn, and p ◦π is a momentum
map for the Tn-action on M.

Chern class and Lagrangian class. The existence of global angle variables on a
Lagrangian fibre bundle L = (M, ω, π) is tantamount to the existence of a global
Lagrangian section of π : M → B.

First let us consider plain smooth sections of π. We need to introduce a few
sheaves of abelian groups on the base space B. There is Ωk, the sheaf of smooth
k-forms, and its subsheaf Z k of closed k-forms. Then there is the sheaf of smooth
sections of T , which we will simply call T , and the sheaf of locally constant
sections of P , which we will likewise simply call P . Let {Ui}i∈I be an open
cover of B and suppose that we have local smooth sections si : Ui → M of π.
Since M is a T -torsor, over each intersection Uij = Ui ∩ Uj we have a unique
section tij ∈ T (Uij) such that si = tij · sj. The tuple t = (tij) is a Čech 1-cocycle
and defines an element [t] ∈ H1(B, T ).

Since T is the quotient bundle T∗B/P , on the level of sheaves we have a short
exact sequence

0 −→ P −→ Ω1 −→ T −→ 0.
The sheaf Ω1 is fine, so the long exact cohomology sequence gives canonical
isomorphisms

Hk(B, T ) ∼= Hk+1(B, P)
for all k ≥ 0. The image c(M) ∈ H2(B, P) of [t] is the Chern class of the T -
torsor M and it is the obstruction to the existence of a global section of π. It is
independent of the symplectic structure on M.

Since P is Lagrangian, it is a subsheaf of Z 1, and therefore the exterior deriv-
ative d : Ω1 → Z 2 descends to a morphism

dP : T −→ Z 2.

A section t of T is closed if dP t = 0. If the open sets Ui are small enough, we can
choose the local sections si to be Lagrangian, which implies that the transition
functions tij are closed. Thus the tij are sections of the subsheaf K = ker dP
of T , and the corresponding cohomology class lives in H1(B, K ). This is the
Lagrangian class λ(L ), which is implicit in the paper of Dazord and Delzant but
was named by Zung [49], and it is the obstruction to the existence of a global
Lagrangian section of π. Given a Lagrangian section s, the map T∗B → M defined
by (b, α) 7→ ϕ(α)(s(b)) identifies the Lagrangian fibre bundle T with L .

Therefore the vanishing of the Lagrangian class λ(L ) is equivalent to L being
isomorphic as a Lagrangian fibre bundle to T . The vanishing of both λ(L ) and
the affine monodromy µ(P) is equivalent to the existence of global action-angle
variables. This is the version of Duistermaat’s theorem established by Dazord and
Delzant (who, by the way, also considered the case of less than fully integrable
systems).

Symplectic torsors. Dazord and Delzant went on to prove that the monodromy
and the Lagrangian class completely classify all Lagrangian fibre bundles. Let us
widen our view a little by fixing an integral affine manifold B with period bundle
P and torus bundle T = T∗B/P , and examining arbitrary T -torsors over B.
Any such torsor π : M → B has a well-defined Chern class c(M) ∈ H2(B, P).
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In fact, just as for principal bundles the cohomology group H2(B, P) classifies
T -torsors up to isomorphism. (If the linear monodromy µ0(P) vanishes, then
P is the constant local system Zn, a T -torsor is an ordinary principal Tn-bundle,
and the Chern class is the ordinary Chern class in H2(B, Zn).)

Let us think about all possible symplectic forms ω on M which vanish on
the fibres of π, so making L = (M, ω, π) into a Lagrangian fibre bundle. We
will call L a symplectic T -torsor with total space M. As before we regard two
symplectic T -torsors as isomorphic if the total spaces are symplectomorphic via
a diffeomorphism that fixes the base B. The collection of isomorphism classes
[L ] is an analogue of the Picard group of an algebraic variety and we will denote
it by Pic(B, P).

This set is equipped with two algebraic operations. The opposite of L =
(M, ω, π) is −L = (M,−ω, π). (Negating the almost symplectic form has
the effect of reversing the T -action, i.e. composing it with the automorphism
t 7→ t−1 of T .) Given two symplectic T -torsors L1 = (M1, ω1, π1) and L2 =
(M2, ω2, π2), define M to be the T -torsor (M1 ×B M2)/T −, where T − is the
antidiagonal subbundle {(t, t−1) | t ∈ T } of T ×B T . It is a theorem of Ping Xu
[48] that the form ω1 + ω2 on M1 ×B M2 descends to an almost symplectic form
ω on M which makes L = (M, ω, π) into a symplectic T -torsor. We call L the
sum of L1 and L2. The operation [L1] + [L2] = [L1 + L2] turns Pic(B, P) into
an abelian group. The zero element is [T ] and the opposite of [L ] is [−L ].

Can we explicitly describe the Picard group Pic(B, P)? The Poincaré lemma
implies that

0 −→ Z k −→ Ωk d−→ Z k+1 −→ 0
is a short exact sequence of sheaves. To begin with, this gives us isomorphisms

Hl(B, Z k) ∼= Hk+l(B, R),

because Ωk is fine. Furthermore, taking k = 1 and dividing the first two terms by
P we get the short exact sequence

0 −→ Z 1/P −→ T
dP−→ Z 2 −→ 0.

This identifies the kernel K = ker dP with Z 1/P and yields a long exact se-
quence

0 −→ H0(B, K ) −→ H0(B, T )
dP,∗−→ H0(B, Z 2) ∂−→ H1(B, K ) −→ H1(B, T )

dP,∗−→ H1(B, Z 2) ∂−→ H2(B, K ) −→ · · ·
Substituting Hk(B, Z 2) ∼= Hk+2(B, R) and Hk(B, T ) ∼= Hk+1(B, P), and noticing
that Hk(B, K ) → Hk(B, T ) ∼= Hk+1(B, P) is the connecting homomorphism δ
for the short exact sequence

0 −→ P −→ Z 1 −→ K −→ 0,

we obtain the long exact sequence that we want,

0 −→ H0(B, K ) δ−→ H1(B, P)
dP,∗−→ H2(B, R) ∂−→ H1(B, K ) δ−→ H2(B, P)

dP,∗−→ H3(B, R) ∂−→ H2(B, K ) δ−→ · · ·
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If a T -torsor M admits a symplectic form ω vanishing on the fibres, then δ
maps the Lagrangian class λ(M, ω, π) to the Chern class c(M), and therefore
dP,∗c(M) = 0. So we see that dP,∗c(M) = 0 is a necessary condition for M to
be the total space of a symplectic T -torsor. Dazord and Delzant show that this
condition is actually sufficient, and that every λ ∈ H1(B, K ) satisfying δλ =
c(M) is the Lagrangian class of a unique isomorphism class of Lagrangian fibre
bundles with total space M. The conclusion is as follows.

Theorem. Let B be an integral affine manifold with period bundle P . Let T be the torus
bundle T∗B/P and let K be the kernel of the sheaf homomorphism dP : T → Z 2.

(i) The map Pic(B, P) → H1(B, K ) defined by [L ] 7→ λ(L ) is a group isomor-
phism.

(ii) We have a short exact sequence

0 −→ H2(B, R)/dP,∗H1(B, P) −→ Pic(B, P) −→ ker(dP,∗) −→ 0.

This theorem gives us two different descriptions of the identity component of
the Picard group, namely Pic0(B, P) is equal to the group of symplectic torsors
of “degree” (i.e. Chern class) 0, and

Pic0(B, P) ∼= H2(B, R)/dP,∗H1(B, P).

The “Néron-Severi group” (i.e. component group) Pic(B, P)/Pic0(B, P) is iso-
morphic to the subgroup ker(dP,∗) of H2(B, P). If the base B is of finite type, the
Picard group is finite-dimensional and the Néron-Severi group is finitely gener-
ated.

Suppose that we are given a T -torsor π : M → B with Chern class c ∈
H2(B, P) and let us denote by Pic(M, B, P) ∼= δ−1(c) the collection of isomor-
phism classes of symplectic T -torsors with total space M. The theorem tells
us that Pic(M, B, P) is nonempty if and only if dP,∗c = 0 and that the group
Pic0(B, P) acts simply transitively on Pic(M, B, P). The action is the gauge ac-
tion given by the formula [σ] · [M, ω, π] = [M, ω + π∗σ, π], where σ ∈ Z2(B) is a
de Rham representative of a class in H2(B, R).

Zung has obtained a version of these results for certain singular Lagrangian
fibrations.

Twisted symplectic torsors. It is instructive to go one step further in the long ex-
act sequence and ask what happens if dP,∗c(M) is nonzero. This leads to a “non-
holonomic” or “quasi-Hamiltonian” version of the Duistermaat-Dazord-Delzant
theorems. I will outline the results and publish the proofs elsewhere. We define a
twisted Lagrangian fibre bundle L = (M, ω, π) over a base manifold B in the same
way as a Lagrangian fibre bundle, except that we drop the requirement that ω be
closed. Thus ω is an almost symplectic form.

It turns out that, just as in the Lagrangian case, the cotangent bundle T∗B acts
on the total space M of a twisted Lagrangian fibre bundle L and that the kernel
of the action is a bundle of lattices P , which is Lagrangian with respect to the
standard symplectic form on T∗B. So again B is an integral affine manifold and
M is a torsor for the torus bundle T = T∗B/P .

We now fix the integral affine manifold (B, P) and look at any twisted La-
grangian bundle L = (M, ω, π) which is at the same time a T -torsor. We as-
sume that the almost symplectic form ω is compatible with the T -action in the
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sense that the T∗B-action on M induced by ω has kernel P . We call such an L
a twisted symplectic T -torsor and set ourselves the task of classifying up to iso-
morphism all twisted symplectic T -torsors. We denote the set of isomorphism
classes by TPic(B, P).

The first observation is that this set is an abelian group in the same way as the
ordinary Picard group. We will refer to TPic(B, P) as the twisted Picard group of
the integral affine manifold (B, P).

The next observation is that every T -torsor M possesses a compatible almost
symplectic form and that the extent to which this form is not closed is measured
by the class dP,∗c(M).

Theorem. Every T -torsor π : M → B possesses a compatible almost symplectic form
ω. Every such form ω satisfies dω = π∗η for a unique closed 3-form η ∈ Z3(B). We
have [η] = dP,∗c(M).

We call the closed 3-form η = η(L ) the twisting form of the twisted Lagrangian
fibre bundle L . It is an isomorphism invariant of L . The pair (ω, η) is a cocycle
in the relative de Rham complex of the projection π.

The Dazord-Delzant theorem generalizes as follows.

Theorem. We have an exact sequence

0 −→ Ω2(B)/dP H0(B, T ) −→ TPic(B, P) −→ H2(B, P) −→ 0.

So the moduli space of twisted Lagrangian fibre bundles is typically infinite-
dimensional. These degrees of freedom can be taken away by introducing a
coarser form of gauge equivalence, namely by letting an arbitrary 2-form σ ∈
Ω2(B) on the base act on a twisted Lagrangian fibre bundle L = (M, ω, π) by
the formula σ ·L = (M, ω + π∗σ, π). This action changes the twisting form by
the exact 3-form dβ. It follows from the theorem that TPic(B, P)/Ω2(B) is iso-
morphic to H2(B, P), in other words every T -torsor has a compatible almost
symplectic structure which is unique up to coarse gauge equivalence.

A twisted symplectic T -torsor does not have a well-defined Lagrangian class,
but the difference L1 −L2 = L1 + −L2 of two twisted symplectic T -torsors
that have the same twisting forms, η(L1) = η(L2), is a symplectic T -torsor
and therefore has a well-defined Lagrangian class. It follows that if we fix a
closed 3-form η ∈ Z3(B) the set of isomorphism classes of twisted symplectic
T -torsors with twisting form η is a principal homogeneous space of Pic(B, P).
If in addition we fix a class c ∈ H2(B, P) satisfying dP,∗c = [η], then the set
of isomorphism classes of twisted symplectic T -torsors with Chern class c and
twisting form η is a principal homogeneous space of Pic0(B, P).

Groupoids and realizations. At the end of my talk Alan Weinstein pointed out
that Duistermaat’s study of global action-angle variables provided one of the
incentives for him to formulate the symplectic groupoid program [18], [45]. In
the language of that program a Lagrangian fibre bundle is nothing but a realization
of the base manifold B equipped with the zero Poisson structure, and the torus
bundle T is a symplectic groupoid over B (with source and target maps being
equal) which integrates this Poisson manifold.

Every manifold B with zero Poisson structure is obviously integrable and the
associated source-simply connected symplectic groupoid is just the cotangent
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bundle T∗B. What makes the integral affine case special is the existence of a
proper symplectic groupoid T which integrates the trivial Poisson structure. The
Duistermaat-Dazord-Delzant theorems then amount to a classification of all real-
izations of B which are free and fibre-transitive under T . The group Pic(B, P)
is referred to as the static Picard group of the groupoid T in [11]. (The full,
noncommutative, Picard group is the semidirect product of Pic(B, P) with the
group of integral affine automorphisms of B.) The twisted case also fits into this
framework, as one can see from the papers [10] and [14].

The quantum mechanical spherical pendulum. Having spent far more time on
action-angle variables than I intended, let me be very brief about the quantum me-
chanical picture. A treatment of quantum monodromy in the spherical pendulum
was given by Richard Cushman and Hans Duistermaat [21]. A different interpre-
tation was given soon afterwards by Victor Guillemin and Alejandro Uribe [35].
Let me quote from Hans’ review of the latter paper in the Mathematical Reviews,
which he starts by explaining his own approach:

If one considers the Schrödinger operator E = −(h̄2/2)∆ + V, where ∆ is the Laplace
operator on the 2-dimensional standard sphere S in R3 and the potential V is the
vertical coordinate function, then the rotational symmetry around the vertical axis
yields an operator L = ih̄(x1∂/∂x2 − x2∂/∂x1) which commutes with S [sic].

Replacing ih̄∂/∂xj by the conjugate variable pj, we get principal symbols e and l of
E and L, respectively, which Poisson commute and define an integrable Hamiltonian
system on the phase space T∗S, the cotangent bundle of S. One has straightforward
generalizations to n commuting operators E1, . . . , En with principal symbols e1, . . . ,
en on n-dimensional manifolds M.

Because the operators Ej commute, one has common eigenfunctions ψk, k = 1,
2, . . . , with eigenvalues ε j,k (Ejψk = ε j,k · ψk). The rule for finding the n-dimensional
spectrum (ε1,k, . . . , εn,k) ∈ Rn for k = 1, 2, . . . , asymptotically for h̄ ↓ 0 and near a
regular value of the mapping (e1, · · · , en) is as follows. One constructs locally so-
called action variables, which are functions (a1, . . . , an) of the (e1, . . . , en), in such a
way that (∂ai/∂ej) is invertible and the Hamiltonian flows of the aj are periodic with
period 2π. Then the n-dimensional spectrum is given asymptotically by a−1(Zn + α),
where Zn is the integer lattice, α is a Maslov shift, and a is the vector of action
variables given above. This means that the actions, in particular the nonexistence of
global action variables, can be read off from the asymptotics of the spectrum.

He proceeds to explain the different approach taken by Guillemin and Uribe.
Although it has some very convincing illustrations, Cushman and Duistermaat’s
paper is little more than an announcement and there does not seem to exist a
more comprehensive version. Some ten years after its appearance experimental
evidence of quantum monodromy was found and finally Vũ Ngo. c San wrote two
papers [43], [44] clarifying and elaborating on Cushman and Duistermaat’s ideas.

3. Duistermaat-Heckman

Of all Hans Duistermaat’s accomplishments the best known to differential ge-
ometers is probably the Duistermaat-Heckman theorem [29]. This is so familiar
to most of the audience that I passed it over in my talk, but in this written version
I can’t resist making some remarks about it. Recall that in its simplest form the
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theorem states that
∫

M
exp(ω− t f ) =

∫

X

exp(ω− t f )
e(X, t)

.

Here (M, ω) is a compact symplectic manifold, t is a complex parameter, f is a
periodic Hamiltonian, X is the critical manifold of f , and e(X, t) is the equivariant
Euler class of the normal bundle of X in M. The integral on the left is to be
interpreted as the integral of e−t f ωn/n!, where 2n = dim M. This is precisely
the Fourier-Laplace transform of the measure f∗(ωn/n!) obtained by pushing
forward the Liouville measure ωn/n! to the real line. The critical manifold X
usually consists of connected components of various dimensions, so the integral
on the right is to be read as a sum of integrals, one for each component.

The theorem contains as a special case Archimedes’ result that the surface
area of a sphere is equal to that of the circumscribed cylinder, an illustration of
which, according to Cicero [42, Liber V, §§ 64–66], adorned the Syracusan’s tomb.
A modern antecedent of the theorem is Bott’s residue formula for holomorphic
vector fields [8]. Soon after publication three interesting alternative proofs ap-
peared, one based on the localization principle in equivariant cohomology by
Atiyah and Bott [5] and Berline and Vergne [7] (see also [6] and [34]), one based
on partial action-angle variables by Dazord and Delzant [22], and one based on
the coisotropic embedding theorem by Guillemin and Sternberg [33].

The index theorem. My favourite meta-application of the Duistermaat-Heckman
theorem is Atiyah’s heuristic derivation [3] of the Atiyah-Singer index theorem
for the Dirac operator suggested by ideas of Witten [47]. Let X be a compact
Riemannian manifold and let M = C∞(S1, X) be the loop space of X. A tangent
vector to M at a loop γ is a vector field along γ, i.e. a section of γ∗(TX). The loop
space has a Riemannian structure: the inner product of two tangent vectors s1,
s2 ∈ Tγ M is defined to be the integral

∫
S1(s1(θ), s2(θ)) dθ. The circle S1 acts on M

by spinning the loops, and we let α be the 1-form on M dual to the infinitesimal
generator of this action. Then ω = dα is a presymplectic structure on M; it
degenerates for example at the closed geodesics of X.

Despite this degeneracy the circle action is generated by a Hamiltonian, namely
the energy function E : M → R given by E(γ) = 1

2

∫
S1‖dγ‖2. The Duistermaat-

Heckman theorem tells us to integrate the functional e−tE times a “Liouville” vol-
ume form on M. The “Riemannian” volume form on M is the Wiener measure
dγ, and just as in the finite-dimensional case we must multiply this by the (reg-
ularized) Pfaffian of the skew symmetric endomorphism of TM defined by the
presymplectic form. This Pfaffian exists if the manifold X has a Spin-structure,
and the Duistermaat-Heckman integral

∫
M e−tE(γ) Pf(ω) dγ is seen to be the in-

dex of the associated Dirac operator ð. The Duistermaat-Heckman theorem then
says that this integral localizes to the fixed point set MS1

, which is a copy of X. By
calculating the weights of the action on the normal bundle of X in M one arrives
at the A-roof genus and thus concludes that index(ð) = Â(X).

Nitta’s theorem. Is there a generalization of the Duistermaat-Heckman theorem
to Poisson manifolds? In general this seems too much to ask for, but a reasonable
compromise was found by Yasufumi Nitta [40, 41]. I state his result in a more
general form obtained by (my student and Hans’ grand-student) Yi Lin [38]. Let



14 REYER SJAMAAR

(M, ρ) be a compact generalized Calabi-Yau manifold, that is a 2n-dimensional man-
ifold equipped with a (possibly twisted) generalized complex structure defined
by a pure spinor ρ ∈ Ω∗(M, C) with the property that the 2n-form ν = (ρ, ρ̄) is
a volume form. (Such manifolds are discussed in more detail in Gil Cavalcanti’s
lecture notes in these proceedings.) Let T be a torus acting on M in a Hamilton-
ian fashion with generalized moment map Φ : M → t∗. Then the pushforward
measure Φ∗(ν) on t∗ is equal to a piecewise polynomial function times Lebesgue
measure. For a symplectic manifold (M, ω) we have ρ = eiω and ν = ωn/n!,
and so this assertion is exactly the Fourier transformed version of the classical
Duistermaat-Heckman theorem.
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